新闻资讯解决方案行业百科

攻克机器视觉图像处理技术

发布时间:2014年11月29日
     从某种意义上说,图像处理分析是机器视觉的一部分。而从另一种意义上说,图像处理分析是一门更广的学科。然而实际上,这两个领域是密不可分,互相支持的。

     机器视觉系统中,视觉信息的处理技术主要依赖于图像处理,图像处理的主要方法包括图像增强 、数据编码和传输、平滑、边缘锐化、分割、特征抽取、图像识别与理解等内容。经过这些处理后,输出图像的质量得到相当程度的改善,既改善了图像的视觉效果,又便于 计算机对图像进行分析、处理和识别。

1、图像的增强   
图像的增强用于调整图像的对比度,突出图像中的重要细节,改善视觉质量。通常 采用灰度直方图修改技术进行图像增强。图像的灰度直方图是表示一幅图像灰度分布情况的统计特性图表,与对比度紧密相连。

2、图像的平滑 
  图像的平滑处理技术即图像的去噪声处理,主要是为了去除实际成像过程中,因成像设备和环境所造成的图像失真,提取有用信息。众所周知,实际获得的图像在形成、传输、接收和处理的过程中,不可避免地存在着外部干扰和内部干扰,如光电转换过程中敏感元件灵敏度的不均匀性、数字化过程的量化噪声、传输过程中的误差以及人为因素等,均会使图像变质。因此,去除噪声,恢复原始图像是图像处理中的一个重要内容 。

3、图像的数据编码和传输 
  数字图像的数据量是相当庞大的,一幅512*512个像素的数字图像的数据量为256 K 字节,若假设每秒传输25帧图像,则传输的信道速率为52.4M比特/秒。高信道速率意味着高投资,也意味着普及难度的增加。因此,传输过程中,对图像数据进行压缩显得非常重要。数据的压缩主要通过图像数据的编码和变换压缩完成。

图像数据编码一般采用预测编码,即将图像数据的空间变化规律和序列变化规律用一个预测公式表示,如果知道了某一像素的前面各相邻像素值之后,可以用公式预测该像素值。采用预测编码,一般只需传输图像数据的起始值和预测误差,因此可将8比特/ 像素压缩到2比特/像素。

4、边缘锐化 
  图像边缘锐化处理主要是加强图像中的轮廓边缘和细节,形成完整的物体边界,达到将物体从图像中分离出来或将表示同一物体表面的区域检测出来的目的。它是早期视觉理论和算法中的基本问题,也是中期和后期视觉成败的重要因素之一。

5、图像的分割 
  图像分割是将图像分成若干部分,每一部分对应于某一物体表面,在进行分割时,每一部分的灰度或纹理符合某一种均匀测度度量。某本质是将像素进行分类。分类的依据是像素的灰度值、颜色、频谱特性、空间特性或纹理特性等。图像分割是图像处理技术的基本方法之一,应用于诸如染色体分类、景物理解系统、机器视觉等方面。图像分割主要有两种方法:一是鉴于度量空间的灰度阈值分割法,一种是空间域区域增长分割方法。

6、图像的识别 
  图像的识别过程实际上可以看作是一个标记过程,即利用识别算法来辨别景物中已分割好的各个物体,给这些物体赋予特定的标记,它是机器视觉系统必须完成的一个任务。

按照图像识别从易到难,可分为三类问题。第一类识别问题中,图像中的像素表达了某一物体的某种特定信息。如遥感图像中的某一像素代表地面某一位置地物的一定光谱波段的反射特性,通过它即可判别出该地物的种类。第二类问题中,待识别物是有形的整体,二维图像信息已经足够识别该物体,如文字识别、某些具有稳定可视表面的三维体识别等。但这类问题不像第一类问题容易表示成特征矢量,在识别过程中,应先将待识别物体正确地从图像的背景中分割出来,再设法将建立起来的图像中物体的属性图与假定模型库的属性图之间匹配。第三类问题是由输入的二维图、要素图、2·5维图等,得出被测物体的三维表示。这里存着如何将隐含的三维信息提取出来的问题,也是当今科学研究的热点。
020-38219916
sales@zlkc.com.cn

我们为您提供高品质的工业镜头 中联科创 电警单元镜头 线扫镜头 低畸变镜头 监控镜头 工业相机镜头 远心镜头 高分辨率镜头 道路监控镜头 缺陷检测镜头 智能交通镜头 机器视觉镜头!

版权所有 @ 广州智赛电子科技有限公司 2006-2025.
粤ICP备11077438号-5